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Abstract. The aim of this work is to define a no-referenced perceptual
image quality estimator applying the perceptual concepts of the Chro-
matic Induction Model The approach consists in comparing the received
image, presumably degraded, against the perceptual versions (different
distances) of this image degraded by means of a Model of Chromatic
Induction, which uses some of the human visual system properties. Also
we compare our model with a original estimator in image quality assess-
ment, PSNR. Results are highly correlated with the ones obtained by
PSNR but this proposal does not need an original image or a reference
one in order to give an estimation of the quality of the degraded image.

Keywords: Human Visual System, Contrast Sensitivity Function, Per-
ceived Images, Wavelet Transform, Peak Signal-to-Noise Ratio, No-Reference
Image Quality Assessment.

1 Introduction

The early years of the 21st century have witnessed a tremendous growth in the
use of digital images as a means for representing and communicating information.
A significant literature describing sophisticated theories, algorithms, and appli-
cations of digital image processing and communication has evolved.Aconsiderable
percentage of this literature is devoted to methods for improving the appearance
of images, or for maintaining the appearance of images that are processed. Nev-
ertheless, the quality of digital images, processed or otherwise, is rarely perfect.
Images are subject to distortions during acquisition, compression, transmission,
processing, and reproduction. To maintain, control, and enhance the quality of
images, it is important for image acquisition, management, communication, and
processing systems to be able to identify and quantify image quality degrada-
tions. The development of effective automatic image quality assessment systems
is a necessary goal for this purpose. Yet, until recently, the field of image qual-
ity assessment has remained in a nascent state, awaiting new models of human
vision and of natural image structure and statistics before meaningful progress
could be made.

Nowadays, Mean Squared Error (MSE) is still the most used quantitative
performance metrics and several image quality measures are based on it, being
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Peak Signal-to-Noise Ratio (PSNR) the best example. But some authors like
Wang and Bovik in [1, 2] consider that MSE is a poor algorithm, to be used
in quality assessment systems. Therefore it is important to know what is the
MSE and what is wrong with it, in order to propose new metrics that fulfills
the properties of human visual system and keeps the favorable features that the
MSE has.

In this way, let f(i,j) and f (i,7) represent two images being compared and
the size of them is the number of intensity samples or pixels. Being f(7,j) the
original reference image, which has to be considered with perfect quality, and
f(i,7) a distorted version of f(i, j), whose quality is being evaluated. Then, the
MSE and the PSNR are, respectively, defined as:
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where G4, is the maximum possible intensity value in f (i, j) (M x N size). Thus,
for gray-scale images that allocate 8 bits per pixel (bpp) Gmaz = 28 — 1 = 255.
For color images the PSNR is defined as in the Equation 2, whereas the color
MSE is the mean among the individual MSE of each component.

An important task in image compression systems is to maximize the correla-
tion among pixels, because the higher correlation at the preprocessing, the more
efficient algorithm postprocessing. Thus, an efficient measure of image quality
should take in to account the latter feature. In contrast to this, MSE does not
need any positional information of the image, thus pixel arrangement is ordered
as a one-dimensional vector.

Both MSE and PSNR are extensively employed in the image processing
field, since these metrics have favorable properties, such as:

1. A convenient metrics for the purpose of algorithm optimization. For example
in JPEG2000, MSE is used both in Optimal Rate Allocation [3, 4] and
Region of interest [5, 4]. Therefore MSE can find solutions for these kind of
problems, when is combined with the instruments of linear algebra, since it
is differentiable.

2. By definition MSE is the difference signal between the two images being
compared, giving a clear meaning of the overall error signal energy.

2 Image Quality Assessment

2.1 Full Reference (FR)

Bottom-Up Approaches Psychological and physiological studies in the past
century have gained us a tremendous amount of knowledge about the human
visual system (HVS). Still, although much is known about the mechanisms of
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early, front-end vision, much more remains to be learned of the later visual
pathways and the general higher level functions of the visual cortex. While the
knowledge is far from complete, current models of visual information processing
mechanisms have become sufficiently sophisticated that it is of interest to explore
whether it is possible to deploy them to predict the performance of simple human
visual behaviors, such as image quality evaluation.

Bottom up approaches to image quality assessment are those methods that
attempt to simulate well modeled functionalities of the HVS, and integrate these
in the design of quality assessment algorithms that, hopefully, perform similar
to the HVS in the assessment of image quality. In this chapter we begin with a
brief description of relevant aspects of the anatomy and psychophysical features
of the HVS. This description will focus on those HVS features that contribute
to current engineering implementations of perceptual image quality measures.

Most systems that attempt to incorporate knowledge about the HVS into
the design of image quality measures use an error sensitivity framework, so that
the errors between the distorted image and reference image are perceptually
quantized according to HVS characteristics.

Top-Down Approaches The bottom-up approaches to image quality assess-
ment described in the last subsection (2.1) attempt to simulate the functional
components in the human visual system that may be relevant to image quality
assessment. The underlying goal is to build systems that work in the same way as
the HVS, at least for image quality assessment tasks. By contrast, the top-down
systems simulate the HVS in a different way. These systems treat the HVS as
a black box, and only the input output relationship is of concern. A top-down
image quality assessment system may operate in a manner quite different from
that of the HVS, which is of little concern, provided that it successfully predicts
the image quality assessment behavior of an average human observer.

One obvious approach to building such a top-down system is to formulate
it as a supervised machine learning problem, as illustrated in Fig. 1. Here the
HVS is treated as a black box whose inputoutput relationship is to be learned.
The training data can be obtained by subjective experimentation, where a large
number of test images are viewed and rated by human subjects. The goal is to
train the system model so that the error between the desired output (subjective
rating) and the model prediction is minimized. This is generally a regression or
function approximation problem. Many techniques are available to attack these
kinds of problems.

Unfortunately, direct application of this method is problematic, since the
dimension of the space of all images is the same as the number of pixels in
the image. Furthermore, subjective testing is expensive and a typical extensive
subjective experiment would be able to include only several hundred test image-
shardly an adequate coverage of the image space. Assigning only a single sample
at each quadrant of a ten dimensional space requires a total of 1024 samples,
and the dimension of the image space is in the order of thousands to millions.
An excellent example of the problem of dimensionality.
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Fig. 1. Learning HVS.

One method that might be useful to overcome this problem is by dimension
reduction. The idea is to map the entire image space onto a space of much lower
dimensionality by exploiting knowledge of the statistical distribution of typical
images in the image space. Since natural images have been found to exhibit
strong statistical regularities, it is possible that the cluster of typical natural
images may be represented by a low dimensional manifold, thus reducing the
number of sample images that might be needed in the subjective experiments.
However, dimension reduction is no trivial task. Indeed, no dimension reduction
technique has been developed to reduce the dimension of natural images to 10
or less (otherwise, extremely efficient image compression techniques would have
been proposed on the basis of such reduction). Consequently, using a dimension
reduction approach for general purpose image quality assessment remains quite
difficult. Nonetheless, such an approach may prove quite effective in the design
of application specific quality assessment systems, where the types of distortions
are fixed and known and may be described by a small number of parameters.

2.2 No-Reference

No-reference (NR) image quality assessment is, perhaps, the most difficult (yet
conceptually simple) problem in the field of image analysis. By some means,
an objective model must evaluate the quality of any given real world image,
without referring to an original high quality image. On the surface, this seems
to be a mission impossible. How can the quality of an image be quantitatively
judged without having a numerical model of what a good/bad quality image
is supposed to look like? Yet, amazingly, this is quite an easy task for human
observers. Humans can easily identify high quality images versus low quality
images, and, furthermore, they are able to point out what is right and wrong
about them without seeing the original. Moreover, humans tend to agree with
each other to a pretty high extent. For example, without looking at the original
image, probably every reader would agree that the noisy, blurry, and JPEG2000
compressed images in Fig. 2 have lower quality than the luminance shifted and
contrast stretched images.

Before developing any algorithm for image quality assessment, a fundamental
question that must be answered is what source of information can be used to
evaluate the quality of images. Clearly, the human eyebrain system is making use
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(a) Image Baboon (b) Image Splash
Fig. 2. 256 x 256 patches (cropped for visibility) of Images Baboon and Splash distorted

by means of JPEG2000 compression, although both images have the same objective
quality (PSNR=30dB), their visual quality is very different.

of a very substantial and effective pool of information about images in making
subjective judgments of image quality.

Three types of knowledge may be employed in the design of image quality
measures: knowledge about the original high quality image, knowledge about
the distortion process, and knowledge about the human visual system (HVS).
In FR quality assessment, the high quality original image is known a priori. In
NR quality assessment, however, the original image is absent, yet one can still
assume that there exists a high quality original image, of which the image being
evaluated is a distorted representation. It is also reasonable to make a further
assumption that such a conjectured original image belongs to the set of typical
natural images.

It is important to realize that the cluster of natural images occupies an ex-
tremely tiny portion in the space of all possible images. This potentially provides
a strong prior knowledge about what these images should look like. Such prior
knowledge could be a precious source of information for the design of image
quality measures. Models of such natural scenes attempt to describe the class
of high quality original images statistically. Interestingly, it has been long con-
jectured in computational neuroscience that the HVS is highly adapted to the
natural visual environment, and that, therefore, the modeling of natural scenes
and the HVS are dual problems.

Knowledge about the possible distortion processes is another important in-
formation source that can be used for the development of NR image quality
measures. For example, it is known that blur and noise are often introduced
in image acquisition and display systems and reasonably accurate models are
sometimes available to account for these distortions. Images compressed using
block based algorithms such as JPEG often exhibit highly visible and undesirable
blocking artifacts. Wavelet based image compression algorithms operating at low
bit rates can blur images and produce ringing artifacts near discontinuities.

Of course, all of these types of distortions are application dependent. An
application specific NR image quality assessment system is one that is specifically
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designed to handle a specific artifact type, and that is unlikely to be able to
handle other types of distortions. The question arises, of course, whether an
application specific NR system is truly reference free, since much information
about the distorted image is assumed. However, nothing needs to be assumed
about the original image, other than, perhaps models derived from natural scene
statistics or other natural assumptions. Since the original images are otherwise
unknown, we shall continue to refer to more directed problems such as these as
application specific NR image quality assessment problems.

Of course, a more complex system that includes several modes of artifact
handling might be constructed and that could be regarded as approaching gen-
eral purpose NR image quality assessment. Before this can happen, however, the
various components need to be designed. Fortunately, in many practical appli-
cation environments, the distortion processes involved are known and fixed. The
design of such application specific NR quality assessment systems appears to be
much more approachable than the general, assumption free NR image quality
assessment problem. Very little, if any, meaningful progress has been made on
this latter problem.

Owing to a paucity of progress in other application specific areas, this chapter
mainly focuses on NR image quality assessment methods, which are designed for
assessing the quality of compressed images. In particular, attention is given to a
spatial domain method and a frequency domain method for block based image
compression, and a wavelet domain method for wavelet based image compression.

3 The BPSNR Algorithm

3.1 Chromatic Induction Wavelet Model

The Chromatic Induction Wavelet Model (CIWaM) [6] is a low-level perceptual
model of the HVS. It estimates the image perceived by an observer at a distance d
just by modeling the perceptual chromatic induction processes of the HVS. That
is, given an image 7 and an observation distance d, CIWaM obtains an estimation
of the perceptual image Z, that the observer perceives when observing 7 at
distance d. CIWaM is based on just three important stimulus properties: spatial
frequency, spatial orientation and surround contrast. This three properties allow
to unify the chromatic assimilation and contrast phenomena, as well as some
other perceptual processes such as saliency perceptual processes [7].

The CIWaM model takes an input image Z and decomposes it into a set of
wavelet planes ws, of different spatial scales s (i.e., spatial frequency v) and
spatial orientations o. It is described as:

I:Z Z Ws,0 + Cn, s (3)

s=1 o=w,h,dgl

where n is the number of wavelet planes, ¢, is the residual plane and o is the
spatial orientation either vertical, horizontal or diagonal.
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Fig. 3. (a) Graphical representation of the e-CSF (as,0,i(7,v))) for the luminance chan-
nel. (b) Some profiles of the same surface along the Spatial Frequency (v) axis for dif-
ferent centersurround contrast energy ratio values (r). The psychophysically measured
CSF is a particular case of this family of curves (concretely for r = 1).

The perceptual image Z, is recovered by weighting these w, , wavelet coef-
ficients using the extended Contrast Sensitivity Function (e-CSF, Fig. 3). The
e-CSF is an extension of the psychophysical CSF [8] considering spatial surround
information (denoted by ), visual frequency (denoted by v, which is related to
spatial frequency by observation distance) and observation distance (d). Percep-
tual image Z, can be obtained by

, = Z a(v,r) wso + Cp (4)

where a(v,r) is the e-CSF weighting function that tries to reproduce some per-
ceptual properties of the HVS. The term o(v, ) ws o = Ws,0;p,d can be considered
the perceptual wavelet coefficients of image 7 when observed at distance d and
is written as:

a(v,r) = zetr - Ca(8) + Cruin(8) - (5)

This function has a shape similar to the e-CSF and the three terms that describe
it are defined as:

zetr Non-linear function and estimation of the central feature contrast relative
to its surround contrast, oscillating from zero to one, defined by:

2
Ocen
Osur

2
1 [zme]

Osur

(6)

Zetr =

being ocep, and oy, the standard deviation of the wavelet coefficients in two
concentric rings, which represent a center—surround interaction around each
coefficient.
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C4(5) Weighting function that approximates to the perceptual e-CSF, emulates
some perceptual properties and is defined as a piecewise Gaussian function

[8], such as:
52
- _
Culd) =4 € Lo =0 ™)
e Q,é:s—sthr>0.

Cmin($) Term that avoids a(v,r) function to be zero and is defined by:
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s

Conin(3) = 4 3¢ "2 8 =5 — s <0, ®)
%, §$=8— She > 0.

D=

taking o1 = 2 and o9 = 207. Both C},;,($) and Cy($) depend on the factor
Sthr, Which is the scale associated to 4 cycles per degree when an image is
observed from the distance d with a pixel size [, and one visual degree, whose
expression is defined by Equation 9. Where sy, value is associated to the
e-CSF maximum value.

) 0
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P

(a) Original image (b) d=30 cm. (¢) d=100 cm. (d) d=200 cm.

Fig. 4. (a) Original color image Lenna . (b)-(d) Perceptual images obtained by CIWaM
at different observation distances d.

Fig. 4 shows three examples of CIWaM images of Lenna, calculated by
Eq. 4 for a 19 inch monitor with 1280 pixels of horizontal resolution, at d =
{30,100, 200} centimeters.

3.2 Basics

In the no-referenced image quality issue, there is only a distorted version f (i,7) =
A[f(%,7)] that is compared with f(¢, ), being A a distortion model and the un-
known original image f (4, j) is considered a pattern 7" ([0,1;1,0]) like a chessboard
(Figs. 5) with the same size of f(i,j). The difference between these two images
depends on the features of the distortion model A. For example, blurring, con-
trast change, noise, JPEG blocking or JPEG2000 wavelet ringing.
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(a) (b)

Fig. 5. (a) Pattern [0,1;1,0] or 7. (b) Pattern 7" repeated sixteen times.

In Fig. 2, the images Babbon and Splash are compressed by means of JPEG2000.
These two images have the same PSNR=30 dB when compared to their corre-
sponding original image, that is, they have the same numerical degree of distor-
tion (i.e. the same objective image quality PSNR). But, their subjective quality
is clearly different, showing the image Baboon a better visual quality. Thus, for
this example, PSNR and perceptual image quality has a small correlation. On
the image Baboon, high spatial frequencies are dominant. A modification of these
high spatial frequencies by A induces a high distortion, resulting a lower PSNR,
even if the modification of these high frequencies are not perceived by the HVS.
In contrast, on image Splash, mid and low frequencies are dominant. Modifica-
tion of mid and low spatial frequencies also introduces a high distortion, but
they are less perceived by the HVS. Therefore, correlation of PSNR against the
opinion of an observer is small. Fig. 6 shows the diagonal high spatial frequencies
of these two images, where there are more high frequencies in image Baboon.

(a) (b)

Fig. 6. Diagonal spatial orientation of the first wavelet plane of Images (a) Baboon and
(b)Splash distorted by JPEG2000 with PSNR=30dB.
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If a set of distortions fi(,j) = Ax[f(i,7)] is generated and indexed by k
(for example, let A be a blurring operator), the image quality of fj(i,7) evolves
while varying k, being k, for example, the degree of blurring. Hence, the evo-
lution of fi(i,j) depends on the characteristics of the original f(i,). Thus,
when increasing k, if f(i,j) contains many high spatial frequencies the PSNR
rapidly decreases, but when low and mid frequencies predominated PSNR slowly
decreases.

Similarly, the HVS is a system that induces a distortion on the observed im-
age f (4,4), whose model is predicted by CIWaM. Hence, CIWaM is considered a
HSV particular distortion model A = CIWaM that generates a perceptual image
fo(i,§) = T, from an observed image f(i,j) = Z, i.e T, = CIWaM|Z]. There-
fore, a set of distortions is defined as Ay = CIWaMy, being d the observation
distance. That is, a set of perceptual images is defined Z, 4 = CIWaMy[Z] which
is considered a set of perceptual distortions of the hypothetical image Z.

When image f (i,7) is observed at distance d and this distance is reduced, the
artifacts, if this possesses, are better perceived. In contrast, f (i,7) is observed
from a far distance human eyes cannot perceive their artifacts, in consequence,
the perceptual image quality of the distorted image is always high. The dis-
tance where the observer can perceive the best image quality of image f (4,7) is
considered as the distance D.

3.3 Methodology

Let f(i,7) and f(z',j) = A[f(i,j)] be an pattern image and a distorted image,
respectively. BPSNR methodology is based on finding a distance D, where there
is no perpetual difference between the wavelet energies of the images f(i,j) and
f (4,4), when an observer observe them at d centimeters of observation distance.
So measuring the PSNR of f(i,) at D will yield a fairer and blind perceptual
evaluation of its image quality.

BPSNR algorithm is divided in five steps, which is summarized by the Figure
7 and described as follows:

Step 1: Wavelet Transformation Forward wavelet transform of images f (i, 5)
and f(i, ) is performed using Eq. 3, obtaining the sets {w;,} and {@s,},
respectively. The employed analysis filter is the Daubechies 9-tap/7-tap filter
(Table 1).

Table 1. 9/7 Analysis Filter.

Analysis Filter

i Low-Pass High-Pass
Filter hp (i) Filter hp (7)

0 | 0.6029490182363579 | 1.115087052456994
+1| 0.2668641184428723 | -0.5912717631142470
+2|-0.07822326652898785|-0.05754352622849957
+3|-0.01686411844287495| 0.09127176311424948
+4|0.02674875741080976
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Fig. 7. Methodology for No-Reference PSNR weighting by means of CIWaM. Both
Pattern and Distorted images are wavelet transformed. The distance D where the
energy of perceptual images obtained by CIWaM are equal is found. Then, PSNR of
perceptual images at D is calculated, obtaining the BPSNR metrics.

Step 2: Distance D The total energy measure or the deviation signature[9] &
is the absolute sum of the wavelet coefficient magnitudes, defined by [10]

N M
£= 30 fxlm.n) (10)

where z(m, n) is the set of wavelet coefficients, whose energy is being calcu-
lated, being m and n the indexes of the coefficients. Basing on the traditional
definition of a calorie, the units of £ are wavelet calories (wCal) and can also
be defined by Eq. 10, since one wCal is the energy needed to increase the
absolute magnitude of a wavelet coefficient by one scale.

From wavelet coefficients {ws,} and {@s,} the corresponding perceptual
wavelet coefficients {w =a(v,r) - ws, and {o?) =a(V,T) - Ws,

5,05p,d 5,03p,d

are obtained by applying CIWaM with an observation distance d. Therefore,
Equation 11 expresses the relative wavelet energy ratio eR (J), which com-

pares how different are the energies of the reference and distorted CIWaM
perceptual images, namely ¢, and &, respectively, when these images are

watched from a given distance d.

(11)
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Thus, the main goal of this step is to find eR (D), namely, at D ¢, is equal
to €,, where the energy of the distorted images are the same than the energy
of the pattern.

Step 3: Perceptual Images Getting the perceptual images {f,(¢,7)} and {fp(i, ])}

from the {f(i,j)} and {f(z,j)} images watched at D centimeters, using
Equation 4.

Step 4: Inverse Wavelet Transformation Perform the Inverse Wavelet Trans-
foronf {Ws,0:p,0} and {@s 0, p}, obtaining the perceptual images f, ;),p
and f,( j),p, respectively. The synthesis filter in Table 2 is an inverse Daubechies
9-tap/7-tap filter.

Table 2. 9/7 Synthesis Filter.

Synthesis Filter
i Low-Pass High-Pass
Filter hr, () Filter hp (7)

+1
+2
+3

1.115087052456994
0.5912717631142470
-0.05754352622849957
-0.09127176311424948

0.6029490182363579
-0.2668641184428723
-0.07822326652898785
0.01686411844287495

+4 0.02674875741080976

Step 5: PSNR between perceptual images Calculate the PSNR between per-
ceptual images f,; ),p and f,; ;) p using Eq. 2 in order to obtain the
CIWaM weighted PSNR i.e. the BPSNR.

4 Experimental Results

It is important to mention that BPSNR estimates the degradation, thus, the
smaller the better. In this section, BPSNR performance is assessed by comparing
the statistical significance of the images Lenna and Baboon, in addition to the
Pearson correlation between BPSNR and PSNR data.

Figure 8 depicts three JPEG2000 distorted versions of the image Lenna with
0.05(8(a)), 0.50 (8(b)) and 1.00 (8(c)) bits per pixel. PSNR estimates 23.41, 32.74
and 34.96 dB, respectively. While BPSNR, computes 48.42, 36.56 and 35.95 dB,
respectively. Thus, both PSNR and BPSNR estimate that image at 1.00 bpp has
lower distortion.

When this experiment is extended computing the JPEG2000 distorted ver-
sions from 0.05 bpp to 3.00bpp (increments of 0.05 bpp, depicted at Figure 9),
we found that the correlation between PSNR and BPSNR is 99.32 %, namely for
image Lenna for every 10,000 estimation BPSNR misses only in 68 assessments.

Figure 10 depicts three JPEG2000 distorted versions of the image Baboon
with 0.05(10(a)), 0.50 (10(b)) and 1.00 (10(c)) bits per pixel. PSNR estimates
18.55, 23.05 and 25.11 dB, respectively. While BPSNR computes 43.49, 30.07
and 28.71 dB, respectively. Thus, both PSNR and BPSNR estimate that image
at 0.05 bpp has higher distortion.
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(a) 0.05 bpp (b) 0.50 bpp (c) 1.00 bpp

Fig. 8. JPEG2000 Distorted versions of color image Lenna at different bit rates ex-
pressed in bits per pixel (bpp). (a) High Distortion, (b) Medium Distortion and (c)
Low Distortion.
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Fig. 9. Comparison of PSNR and BPSNR for the JPEG2000 distorted versions of
image Lenna.

When this experiment is extended computing the JPEG2000 distorted ver-
sions from 0.05 bpp to 3.00bpp (increments of 0.05 bpp, depicted at Figure 11),
we found that the correlation between PSNR and BPSNR is 96.95 %, namely
for image Baboon for every 10,000 estimation BPSNR misses only in 305 assess-
ments.

5 Conclusions

BPSNR is a new metric for no-reference or blind image quality based on per-
ceptual weighting of PSNR by using a perceptual low-level model of the Human
Visual System (CIWaM model). The proposed BPSNR metrics is based on five
steps.

The BPSNR assessment was tested in two well-known images, such as Lenna
and Baboon. It is a well-correlated image quality method in these images for
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Yo i :
(a) 0.05 bpp (b) 0.50 bpp

Fig.10. JPEG2000 Distorted versions of color image Baboon at different bit rates
expressed in bits per pixel (bpp). (a) High Distortion, (b) Medium Distortion and (c)

Low Distortion.
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Fig.11. Comparison of PSNR and BPSNR for the JPEG2000 distorted versions of
image Baboon.

JPEG2000 distortions when compared to PSNR. Concretely, BPSNR correlates
with PSNR, on the average in 98.13%.
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